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A finite difference procedure used to analyze the two-dimensional
evolution of the charged particle densities and electrostatic potential
during the initial stages of electrical breakdown between a wire and a
plane is described. The diffusion flux equations for the charged particle
densities and Poisson’s equation for the electrostatic potential con-
stitute a set of coupled, two-dimensional, time dependent, nonlinear
equations that govern the breakdown phenomena. In this paper, we
have solved the problem by two different procedures: (a) a finite dif-
ference method that combines upwind difference scheme (UDS) tor
drift terms, central difference scheme (CDS) for the diffusion terms,
and implicit time integration; and (b) a method that combines CDS for
drift terms, CDS for the diffusion terms, and implicit time integration. in
each case, Crank—Nicolson time integration has also been tried. It is
concluded that method (a) is most suitable for discharge breakdown
problems.  © 1993 Academic Press. Inc.

. INTRODUCTION

Electrical discharges may be initiated by high voltage
breakdown of the gas between two electrodes. For very low
current dengities and where the space charge effects are
negligible, it is possible to obtain analytical solutions of
discharge breakdown models in plane paraliel geometries.
See, for example, Meek and Craggs [ 1 ]. However, at higher
voltages and currents, the space charge effects and the elec-
tric field dependence of the ionization coefficients render the
governing equations nontinear, and numerical procedures
have to be employed. The existing numerical studies in this
regard are mainly concerned with the growth of the dis-
charge in a parallel plane geometry [2-51, using the method
of characteristics. Davies ef al. [6] have attempted to obtain
two-dimensional solutions of discharge growth in a non-
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uniform gap by employing the method of characteristics and
variable grid for the particle conservation equations. The
potential has been computed by a fast Fourier transform
algorithm in two stages with two types of uniform grid.
However, convergence difficulties and vast computer time
and storage requirements have been reported.

Finite difference methods have been used to describe one-
dimensional modeis of breakdown [7-10]. Morrow and his
co-workers [8-10] have applied the flux corrected trans-
port (FCT) algorithm, originally proposed by Boris and
Book [1ll], to discharge problems. These are explicit
upwind methods. Based on a comparison of several explicit
methods, including the FCT method and its variants,
applied to one-dimensional discharge problems [8], it is
concluded that full flux correction of the FCT method with
a peak preserving method yields best results, Extension of
this method to nonuniformn meshes and to diffusion is given
by Morrow and Cram [10]. A recent review and extension
of the FCT algorithm for fluid mechanical problems has
been provided by Munz [12]. He has compared FCT
method with the monotonic upstream-centered scheme for
conservation law (MUSCL), which is particularly suited for
such probiems. It may be noted here that the FCT methods
are explicit in nature and are restricted by the limitations
imposed by the stability criteria and numerical diffusion
[8]. Novak and Bartnikas [13] have used a finite element
program for the two-dimensional parallel plane problem.
An excellent summary of the numerical methods used in the
breakdown probiem is given by Davies [ 14].

In this paper, we have numerically examined the two-
dimensional model of electrical breakdown in a non-uni-
form gap by finite difference methods. Qur examination has
been carried out in the following manner shown in Table L.
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TABLEI

Numerical Procedures for the Particle Conservation Equations

Drift Diflusion Time

terms terms integration
Method (A) UDSs CDS Implicit
Methed (B) CDS CDS Implicit
Method (C) uDs CDS Crank—Nicolson
Method (D) CDS CDS Crank-Nicolson

Note. CDS, central difference scheme, UDS, upwind difference scheme.

In all of the methods central differences are used for
Poisson’s equation. The algebraic equations are solved by
the line-by-line method along with the Thomas algorithm.
A two-tier block iterative method and underrelaxation have
been employed for the solution of the algebraic equations.
Extensive numerical experimentation was necessary to
determine the accuracy of these methods. Comparisons
have been made among the results of various methods.
We conclude that methods (A} and (C) are suitable for
discharge breakdown problems as they provide stability of
the numerical solutions. Since method (A) requires less
computational time and storage, it is to be preferred. In
methods (B) and (D), the central differences for the drift
terms gave rise to numerical oscillations and negative
number densities after an initial period.

II. GOVERNING EQUATIONS, INITIAL
AND BOUNDARY CONDITIONS

Consider a slightly ionized, collision-dominated plasma
which is adequately described by the continuum (diffusion
flux) conservation equations. The diffusion flux equations
are given by

aN
—E+V,'re=P(N€)_R(Ne)

: for electrons
ot

(1)

and the self-consistent electrostatic potential, V, is given by
Gauss’ law as

Vv=— 2 (N, —N,), (2)
&p

where

p.=kT.N, (3)

£

T,= —2[Vp, +eN,ET;
e

and the electric field is

E=VV. (4)
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An equation similar to Eq.(1) can be written for
the positive ions. In the above equations, & is number
density, P is volumetric production (ionization) rate, R is
volumetric recombination rate, I' is particle current density,
i 1s the charged particle mobility, and e is the magnitude of
charge on a single electron. Diffusion coefficients have been
teplaced by kT 'pfe through Einstein’s relation.

Assumptions employed in the derivation of the equations
and the details of the modeling of the ionization and recom-
bination mechanisms are discussed in [15, 17]. In sum-
mary, the major source of charged particles is ionization by
electron impact (Townsend’s mechanism) in the volume of
the discharge. Thermal ionization and recombination are
also considered, but their contribution is found to be negli-
gible in this case. Electrodes are assumed to be absorbing
surfaces.

For the hyperboloid wire-to-plane gap, it is appropriate
to use proiate spheroidal coordinates [16] as shown in
Fig. 1, '

x=asinh usin v cos ¢
y=asinh ¥ sin v sin ¢

(5)
z=acoshucosv,
where x, y, z are the Cartesian coordinates and u, v, ¢ are the

prolate spheroidal coordinates. Here, w= constant are
prolate spheroids, v=constant are hyperboloids, ¢=

1
]
L]
L}
1
1
1

u=0

VI(PLANE)

FIG. 1. Schematic diagram of prolate sphercidal coordinate system
for the study of electrical breakdown between a wire and a plane. Legend:
Lu=052u=10;3 u=154u=20,5u=25Lv=011Lv=01785
NLs=035IV.o=10; V.v=14; VL.v =#/2 (plane).
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constant are half-planes, and a is the semi-focal distance.
In these coordinates, the wire electrode corresponds to
v =uv,, which is non-zero and needs to be specified, and the
wand to v=n/2. u =0 is the centerline of the discharge and
u — o0 1§ into the ambient.

Normalization of the governing differential equations,
boundary, and initial conditions are discussed in detail in
[157. Only the final forms of the equations are given below:

(a) Electrons:

6n(,+ o L 9 sinh un il
3t " [sinh’u+sinio] | sinhudu| 0 G

+ —~I— —CZ [sin v R _EM
sin v dv ° dv
_ E.T, L af, .
“sinh?utsin’o] [sinhwdu| " ou

4 1 a[i Uane]
sin v dv s Jv

+e BER,E4 C Cyn, T Pe ¥/

—C,\ T %020, (6)
and
(b) Electrostatic Potential:

! 1 i sinh 7
sinh”® # +sin® ¢ | sinh ¥ ¢u “au
[sinh? o] hué

1 &7 . & a?

+§E;5;|:SIHUE-J:|=~—2(HE—H+), (7}
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48186 x 102 N, g, T2?
N%2g.

2
and N, is the neutral particle density.
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The dimensionless form of the positive ion equation is
similar to Eq. (6) with the use of ion transport coefficients
and the change of sign of the drift terms, Limiting forms of
the governing equations near # =0 are documented in [17].

Boundary conditions:
Onv=v,, ¥=y andn, =ny n,=n,
Onv=n/2, y=0andn, =ny, n.=ng
On u=0, d/du=0=20n, /0u—this is the axial
symmetry condition, and, as w— oo, Y/0u—0, and
Ry .. Hp- {8)

Initial conditions: The initial number density of elec-
trons and ions, N, is non-zero due to the omni-present
background radiation and has a value of 6 x 10* m~* [18):
therefore,

n..=Hh at =0

9)

The initial potential distribution is given by the solu-
tion to Laplace’s equation in prolate spheroidal coordinates
[17, pp. 165-1677:

¢, Inftan v}
In[tan {v,)]

W (10)

III. NUMERICAL EXPERIMENTS

The three simultaneous, time dependent, second order,
nonlinear partial differential equations, Eqs. (6) and (7) and
a similar one for ions, are solved using a finite difference
algorithm discussed below. Salient features of various
numerical experiments are:

(1) Either implicit time integration or Crank-Nicolson
procedure is used;

(2) Central differences are used for the discretization of
diffusion terms;

{3) Either the upwind difference method or the central
difference methed is employed for the drift terms. In the
upwind method {19, pp. 83-857, a combination of forward
and backward differences is used for drift terms depending
on the sign of the charge on the particle and the direction of
the local component of electric field. The use of upwind
differencing allows one to account for the drift of the
posttively and negatively charged particles in a direction
appropriate with the sign of their charge in the local electric
field. This is not always possible with central, forward, or
backward differences alone;
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(4)
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Where possible, the ionization and recombination
terms are linearized with a negative slope to satisfy the

“positive coefficient rule” [19, p. 38].

— | sin
Since implict time differencing, the Crank-Nicolson pro- é’u[

cedure, and the central difference form of the diffusion terms

are straightforward, they arc not discussed here (refer to
Patankar [19]). For the purpose of demonstration of the
upwind differencing of the drift terms, we choose the
v-direction drift term (third term on the LHS of Eq. (6))

Ol
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FIG. 2. Flow chart depicting the methodology of solution to the algebraic equations.

in the electron number density equation. Using central
differences for this term, first we have

(11)
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FIG. 2—Continued

In the above equation, i is the index in the w-direction and
j is in the v-direction. The derivatives in Eq.(11) are
evaluated at the (/+ 1) “future” time level in the implicit
method. In the Crank—Nicolson scheme, they are evaluated
as an arithmetic mean of their values at the “current” time
level (/), and at “future” time level (/+ 1). j + 1 are halfway
between the grid points. In the evaluation of the terms on
the RHS of Eq. (11), the value of #, is assigned so that the
electrons drift in the direction of — E, (= 3d/dv). Therefore,

we have
d
n, Y =Ki’) nen
dv L+ 172 ov Lj+ L2 !
a
ﬁ‘r_(_'f’) O (12)
v INEST: i
where
|4, B =4 if A>B
=8B if B> A.

The derivatives of the potential in Eq. (12) are evaluated
by central differences. The above procedure describes dis-
cretization for interior points of the solution domain. At the
boundaries, where the boundary conditions of the first type
are specified viz., at v =v,, and n/2 (Eq. (8)), there is no
need for discretization of the differential equations. On the
discharge axis (¢ =0), limiting forms of the governing equa-

tions are derived first [17]. Finite difference approxima-
tions of these limiting forms of the equations are derived by
the procedure described above by considering a fictitious
point to the left of u =0, located at a distance of —du. The
unknown values of the variables at the fictitious point in the
finite difference approximation are solved in terms of their
values at points immediately to the right of the axis (located
at du) by applying the symmetry conditions outlined in
Eq. (8). Fictitious points are also used in the discretization
of the differential equations at the outer boundary (¢ — u ).

Central differences are used in discretizing the Poisson’s
equation for the potential, Eq. (7). The resulting algebraic
equations for number densities as well as for potential may
be cast in the form:

Wipoy XpjorF @iy X j+8u 00 X500

(k+1) _
i—1.F

{13)

(k)
Qiv1.; %

=b—a_ 1, x P+ L

In this form the algebraic equations are suitable for solution
by the line-by-line method using the tridiagonal (Thomas)
algorithm. See Patankar [19].

IIL.1. Selution of Non-linear Algebraic Equations

The algebraic equations in Eq. (13) are solved by using
the line-by-line method (19, pp. 64661 along with the
Themas (tridiagonal) algorithm. In this problem ionization
spreads from the wire (v =v,) towards the plane (v = r/2)
and from the axis (¥ =0) outwards towards the ambient
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(# — o0). For this reason the line-by-line method is 'swept
one way in the u-direction—from the axis (¥ =0) outwards
{(z — o0), instead of sweeping along the - and v-directions
alternately. In this way, the information at the wire, in the
form of the recent values of the primitive variables in the
numerical solution {(k + 1) terms on the right-hand side of
Eq. (13)), 1s carried simultaneously to the plane at each u
and from the axis outwards in the y-direction. This reduces
the number of iterations in the line-by-line method. The
flow chart depicting the solution methodology is shown in
Fig. 2.

The presence of far diagonal terms, the nonlinear nature
of the ionization and recombination terms, and the coupling
of the species conservation equations with Poisson’s equa-
tion, necessitates an iterative solution of the algebraic equa-
tions. We start with the solution known at time r (level /).
A two-tier iteration scheme is used to solve the algebraic
equations. In this iterative scheme, with a guessed potential
distribution, convergence on the number densities, n_ and
n,, is first obtained at time t+ At (level { + 1). With these
converged number density distributions, the potential
distribution is updated by solving Poisson’s equation.
The current potential distribution is then employed in
recalculating the number densities. This procedure is
continued until the number densities and the potential are
consistent with each other. Then, we advance to the next
time ievel, viz., / + 2. .

Alternately, all three dependent variables might have
been iterated at the same time level by simultaneously
solving for all three variables combined, viz, n, , and v,
as opposed to splitting them into two groups—the number
densities into one group and the potential into another.
However, such an iterative scheme requires (approximately
30%) more computational time. Since the changes in the
potential distribution during the earlier part of the transient
are much smaller than the changes in the number densities,
fewer iterations are required to achieve convergence for the
potential. Moreover, the potential distribution at t=0 is
known analytically. If the iteration process combines the
potential and the number densities, Poisson’s equation is
solved as many times as is required to obtain convergence
on number densities, thereby requiring more computational
time.

We have used a successive underrelaxation method to
control the convergence of the algebraic equations, The
relaxation parameter is varied during the transient, using a
value of one at the beginning of the calculations and is
reduced to about 0.2-0.3 during the period of steep rise in
number densities. A small value of underrelaxation
parameter keeps the numerical solution close to the
previously converged solution during a peried of rapid
increase in number densities.

We begin the calculations at time (=0 with a con-
vergence criterion of 107° (0.0001%). The convergence
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criterion is defined as the fractional change in a quantity
under consideration between two successive iterations, &
and & + 1. It may be noted that a value of 107% is very small
for a convergence criterion and is rather stringent. As the
transient progresses and the charged particle number den-
sitics increase rapidly, convergence cannot be obtained with
10~* for a fixed number of iterations. At this point the con-
vergence criterion is increased by a factor of two to 2 x 10~°
and the solution is continued until the next occurrence of
convergence failure, at which time the convergence criterion
is again increased by two to 4 x107° This process is
continued and if the convergence criterion increases
bevond 0.01 (ie., 1%) the computations are terminated.
Throughout this process the maximum number of iterations
is kept constant. After some trials, we have used a maximum
of 200 iterations for both number densities and for electro-
static potential,

I11.2. Radial Profiles and Current Calculations

in order to obtain the radial number density profiles
(in cylindrical coordinates), we transform and interpolate
the results obtained in prolate spheroidal coordinates. In
general, a radial line at a fixed axial location intersects the
surfaces of constant » and ¢ between the computational
nodes. To arrive at radial profiles the results of the com-
putation are linearly interplated in terms of arc lengths on
the hyperboloidal and prolate spheroidal surfaces. The
integrals in the calculations of current are cvaluated by
Simpson’s rule. The derivatives at the electrodes are
calculated by a three-point parabolic approximation so that
they are second-order accurate. It is found that a two-point
linear interpolation near the boundaries is too inaccurate to
determine these dertvatives.

TV. RESULTS AND DISCUSSION

The governing equations have been solved for a range of
values of the applied voltage difference and for both positive
and negative polarity of the wire. The computations
have been performed on the Cray-X/MP-48 and IBM 3090.
Since many variables arc involved, extensive numerical
experimentation has been carried out to ensure the accuracy
and stability of the numerical solutions.

IV.1. Initial Guess for Number Densities and Potential

Two different types of initial guess values for the number
densities are used to start the iterative scheme. They are:

(a) The converged solutions from the previous time step
are the starting “guess” solutions, and

{b) The starting solution at the beginning of a new time -
step is evaluated from an analytical solution for the number
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densities. This is possible if the diffusion and drift of charged
particles is ignored.

Both of them converged to the same solution at each time
step.

IV.2. Renormalized Number Densities

In order to explore the effect of roundoff, the number den-
sities are renormalized by the initial number density, N,
(rather than using N ) so that the initial nondimensional
number densities are equal to one and they are of order one
or larger during this phase of the breakdown. Without such
a renormalization, the number densities are initially of the
magnitude of 10~% and become of the order one or larger
(approximately 1 to 100) as the discharge evolves (i.e., time
progresses).

IV.3. Renormalized Potential

The potential distribution, at each time level, is calculated
from Poisson’s cquation by solving it in three different ways:

(a2) By normalizing the potential with kT /e and using
the line-by-line method to solve Poisson’s equation. With
such a normalization the potential varies by nearly four
decades from cathode to anode.

(b) By the use of the Gauss—Seidel iteration for the
algebraic equations arising from Poisson’s equation (with
the same normalization as above ) in place of the line-by-line
method. It may be noted here that in a situation similar to
this, Sundararajan and Ayyaswamy [207 have observed
that a point-by-point (Gauss—Seidel} iteration is more
appropriate as it does not propagate numerical errors as fast
as the line-by-line method.

{c} By renormalizing the potential in Poisson’s equa-
tion so that it is one (1) on the wire and zero (0) on the
plane and then using the line-by-line method to solve the
algebraic equations.

The agreement among the results of the above numerical
experiments is satisfactory. However, the Gauss—Seidel
method requires 2—4 times more iterations to arrive at the
converged solution than the line-by-line method. There is
excellent agreement between the results of these two
iterative methods. We have used the line-by-line method
along with the Thomas algorithm for the number densities
and potential distribution in the two-dimensional study of
electrical breakdown.

V4. Choice of ug,

In our model, the solution domain extends to infinity in
the u direction but, in the numericai solution, infinity is
represented by a large, but finite number, u,. u,, is suf-
ficiently large that the entire solution becomes insensitive to
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the variation of its numerical value. An appropriate choice
of u,, also ensures that the derivatives of the number den-
sities with respect to u tend to zero smoothly as v - u,. In
this connection we note that the previous two-dimensional
simulations [4, 6] have used experimentally deduced values
of the discharge radius rather than determining it as a part
of the solution and are not self-contained.

Computations have been performed with u , = 1.5, 2, 2.5,
3, and 5 and the resulting density and potential distributions
in the u direction have been compared. Figure 3 shows
one such comparison with x_,=2.5 and 5 at a potential
difference of —2500V. For u_, < 2.5, u-derivatives of the
dependent variables do not tend to zero smoothly as u — 0.
For this reason, u_, is set to 2.5 in the computations for all
of the voltages reported in [15, 17].

IV.5. Different Outer Boundaries for Densities and Potential

When the charge separation in the solution domain
becomes significant, its effects may extend beyond the outer
boundary used for the number densities. The computations
show that charge separation near the axis appears to be
important and the solution boundary for computing the
potential distribution may have to extend beyond u,, =2.5.
For this reason, we have employed u_, = 2.5 as the outer
boundary for number densities and u_, = 5 for the potential.
This increases the outer radius of the solution domain from
6L (with u_, =2.5) to 80L (with u_, =5), where L is the gap
length on the discharge axis. Beyond u,, =2.5,n,=n, = ny,
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FIG. 3. Comparison between the radial profiles of potential distribu-
tion at t=0.795 with u,,=2.5 and 5, respectively. Wire is at —2500 V.
Legend: solid kine — u,, = 2.5; dashed line -+ u_,=5.0.
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FIG. 4. Comparison between the radial profiles of electron number
density at different times during the breakdown, with the wire at —2500 V,
with: A. u,, = 2.5 for densities and for potential distribution; B. u, = 2.5 for
densities and 5 for potential distribution. Legend: solid line — (A); dashed
ling — (B). 1. r=7.5x10"% 2. ¢t =0.295; 3. 1 =0.795.

and the net charge density in Poisson’s equation is set to
zero. Davies et al. [4] have used such a spatial grid in a two-
dimensional axisymmetric simulation of breakdown for a
parallel plate geometry (in cylindrical coordinates). Figure
4 shows a comparison between the radial profiles of electron
number density computed with u, =25 for both the
number densities and potential (dashed lines) and the same
profiles computed with «,, , = 2.5 for number densities and
with u_, , = 5 for the potential distribution (selid lines). The
agreement between the results is not good and point to the
need for the use of different solution boundaries for the
number densities and the potential. A similar trend is also
noted for ion density profiles. We have used different
boundaries for r» and y in our computations. Larger values
than 2.5 and 5 for u. , and u_, ,, respectively, are. not
necessary. Moreover, a smaller value of u ., requires less
computer memory during the execution of the program.

TABLETI
Typical 41 vs. ¢

t At
0—10—* 1x 1073
>10"4—10"3 5x1073
= 0.001—0.01 5x10°4
>001—-18 §x 103}
>1.8-2.0 1x10-3
>20 sx107?
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IV.6. Grid Size and Time Step

A uniform grid has been employed for the spatial coor-
dinates, v and v, and a variable time step, 4t, is used. Com-
putations have been performed with du in the range 0.125 to
0.025 and with five to 400 divisions along the v-direction.
From these experiments we have arrived at a value of 0.05
for Au and 200 divisions in the y-direction. Au is kept the
same for the solution domain for number densities and
potential. Typically a value of 1077 is used for 4¢ at the
beginning of the simulation and it is increased gradually as
time, 1, increases to accommodate numerical accuracy and
to capture important physical phenomena. A satisfactory
variation of A+ vs. ¢ is obtained after a few trials. A typical
At vs. t used in most of the computations is shown in
Table I1. Several combinations of A¢, Au, and Av have been
attempted before arriving at a satisfactory set of values for
each AV investigated. This is done to strike a balance
between guiding the solution through without missing the
avalanche in number densities and keeping the total number
of time steps to a minimum.

IV.7. Other Numerical Methods

In the course of this investigation, we have observed that
when the wire is negatively biased with respect to the
plane, peaks in the radial number density profiles occurred
away from the discharge axis as the discharge evolved, ie,

1 —
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FIG. 5. Comparison between the results of computation with the
implicit and Crank—Nicolson methods of integration. Temporal
development of electron densities at several locations along the
discharge axis (u=0). Legend: solid lines — implicit method; dashed
lines — Crank-Nicolson method; 1.Z2=099; 2. Z=080; 3.Z=067,
4.Z=036.
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as the time increased. An explanation of the physics of
the phenomena is given in [15,17]. To ensure that the
phenomenon is not an artifact of the numerical solution, we
have solved the problem using other finite difference
schemes. They have included the use of combinations of
upwind and central differences, with implicit and Crank—
Nicolson time integration methods.

As noted earlier, central differences can be used for
both drift and diffusion terms. Instead of implicit time
integration, Crank—Nicolson time integration can be
used as it is also unconditionally stable. However, the
Crank—Nicolson method requires more computational time
and storage as the spatial derivatives and source terms in
the equations are arithmetic averages of their values at the
present and future times, Le., at time levels Jand /+ 1. Dif-
ferent combinations of finite differencing of time and drift
terms give rise to the following algorithms: (1) upwind and
implicit methods, (2) central differences and implicit
methods, (3) upwind and Crank—Nicolson methods, and
{4) central differences and Crank-Nicolson methods. We
note here that for all these cases central differences have
been employed for the diffusion terms. We have performed
calculations for the first three cases only. Use of central dif-
ferences for drift terms violates the positive coefficient rule
[19, p. 37] and, with increased time, the numerical solu-
tions develop oscillations. Otherwise the results show the
same general trends as with the upwind method. The results
obtained by using the implicit and Crank—Nicolson
methods of time integration, along with the upwind
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method, are compared for the temporal growth of eléctron
densities (Fig. 5), the axial and radial profiles of electron
densities (Fig. 6 and 7, respectively), and for the current
growth (Fig. 8). The agreement may be considered to be
very good. Such comparisons have also been made for ion
densities and for the potential distribution with similar con-
clusions. Since the Crank-Nicolson method requires more
computing time and memory, we conclude that the implicit
method is preferred.

A combination of central differences and Crank—Nicolson
has not been investigated as this combination has given rise
to numerical oscillations in the solution. Our attempts at
using explicit time integration have been unsuccessful due to
the problems arising out of numerical instability of the algo-
rithm and time step restrictions.

IV.8. Effect of Artificial Diffusion and False Scaling

Early studies on the numerical solutions of fluid flow
employed central difference schemes (CDS) to represent the
convection terms. CDS gives rise to numerical oscillations
at high Reynolds number. To circumvent this difficuity, an
upwind method (UDS) has been employed. Later it is
recognized that UDS results in artificial diffusion and false
scaling [21-23]. But, it does not suffer from the numerical
instabilities associated with the CDS.

In this study, computations have also been performed
using central differences for the drift terms and some of the
observations have been presented in the previous section.
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and the CDS for the drift terms, Temporal development of the electron
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3.72=096;4.72=093,5 Z=09.
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The occurrence of peaks in the charged particle densities is
of particuiar interest to our study [15, 17].

The resuits of computations with the CDS and UIDS for
the drift terms are compared in Fig. 9 for the electron
number density growth on the axis. It may be noted that the
CDS develops oscillations (curve 1 in Fig. 9). During the
initial time, when there arc no oscillations, the agreement
between the results with CDS$ and UDS schemes is good.
The numerical oscillations in the CDS increase in amplitude
with Increase in time and jonization. The ion density curves,
shown in Fig. 10, also show similar trends and the
amplitude of oscillations is smaller at any given time.

The radial profiles of the electron and ion densities are
compared from the CDS and UDS computations in Figs. 11
and 12, respectively. At initial times, both methods show
peaks in the electron density on the discharge axis (curve 1
in Fig. 11) and at later times both the schemes show the
peaks moving away from the axis (curve 2 in Fig. 11} for a
negatively blased wire. For a positively biased wire, the
peaks in number densities remain on the discharge axis
[15, 17]. From this, we may conclude that the occurrence of
peaks away from the axis, for a negatively biased wire, is not
an artifact of the upwind method. Computations for the
CDS have not been carried out beyond ¢ =5x 10" as the
numerical oscillations are too large.

IV.S. Electrical Breakdown with Negative Tons

In clectronegative gases, like air and oxygen, experimen-
tal evidence points to the formation of negative ions.
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FIG. 10. Comparison between the results of computation with the
UDS and the CDS for the drilt terms. Temporal development of the ion
densities on the discharge axis with the wire at — 1500 V.

Note. Solid lines, UDS; dashed lines, CDS. 1. Z=0995; 2. Z=098;
3.Z2=096:4.Z=093,5. Z=109,
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Note. Solid lines, UDS; dashed lines, CDS. 1.t =10"% 2.y =5x 10~*

Negative ions of oxygen, O~ and O, have been identified
as playing an important role in the development of the dis-
charge in air [ 17, Chap. 3]. Two species of negative ions are
described by two specie conservation equations, in addition
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FIG. 12. Comparison between the results of computation with the
UDS and the CDS for the drift terms. Development of the radial profiles
of ion densities with the wire at —1500V; Z=10.99,

Nore. Solid tines, UDS; dashed lines, CDS. 1.t =107* 2. r=5x107%
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to the equations describing the evolution of electrons,
positive ions, and the electrostatic potential. Thus, the total
number of equations to be solved increases to five. However,
the algorithm remains the same. In the iterative solution of
the non-linear algebraic equations, the equations for the
negative ion densities are included in the number density
block (refer to Fig. 2) and are iterated with electron and ion
densities. In this iteration block, the following solution
sequence is implemented: electrons, ions, and, negative ions.
This sequence foliows the relative importance of the species
in their effect on the growth of the discharge. No additional
problems are encountered in the computations with the
negative ions. The results are discussed in [17, Chap. 3].

Y. SUMMARY AND CONCLUSIONS

In this paper, we have developed a finite difference
solution to the two-dimensional, axisymmetric problem of
electrical breakdown in a non-uniform gap. Upwind differ-
ences for the drift terms, central differences for the diffusion
terms, and implicit time integration have been employed.
Additionally, centrai differences for the drift terms and
Crank-Nicelson time integration are investigated. The
methods have been subjected to extensive numerical
experimentation. From this study we conclude that a finite
difference algorithm with implicit time integration and the
upwind method for drift terms yield accurate results until
the time that the quasi-neutral regions develop in the bulk
and sheaths appear adjacent to the electrodes. We have also
found that the use of central differences for the drift terms
leads to oscillations in the numerical solutions. Results with
implicit and Crank-Nicolson time integration methods are
in good agreement. Since the implicit method requires less
computing time and memory, it is to be preferred. Even
though the method is demonstrated for a prolate spheroidal
coordinate system, it is equally applicable to other right-
hand coordinate systems. The algorithm is not coordinate
system dependent. The algorithm is extended to the
breakdown model of air with negative ions, in which case
the total number of governing equations increases from
three to five.

APPENDIX: NOMENCLATURE

semi-focal distance {m).

constant in the equation relating Townsend’s first
ionization coefficient to the ratio E'/p (m/N).
constant in the equation relating Townsend’s first
ionization coefficient to the ratio E'/p (m/N).

; nondimensional form of B, (=B, p/E%).

; constant in Eq. (6).

constant in Eq. (6).

twice the radius of curvature at the tip of the hyper-
boloidal wire {m).

BB

o

ECSleRe N~
b3
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E dimensional electric field intensity (¥/m).

E dimensionless electric field intensity.

€ charge on a single electron (Coulomb).

F a dimensionless parameter in Eq. (6) with a suitable
subscript.

g statistical weight.

k Boltzmann constant (J/K); iteration parameter for
number densities.

L gap length on the discharge axis (m).

! present time level, r {values of all the primitive

dependent variables are known).

future time level, ¢ + A, (values of all the primitive

dependent variables are unknown).

N dimensional number density (m ~*);

number density used in normalizing the charged

particle densities, (m =*) [ =kT_&o/(e’d?)].

n nondimensional number density (appropriately
subscripted)[ = N/N.].

P volumetric production terms {m ~3/s}.

R volumetric recombination terms {m™3/s).

? pressure (Pa}.

T

T

+1

dimensional temperature (K }.
dimensionless temperature [ =7T"/T7,].

t dimensional time (s).

t nondimensional time [ =¢'/t}].

s time used in normalization (s) (= 1/(4; pu, ER)).
At time step.

u, v, ¢ prolate spheroidal coordinates.

Au grid spacing in » direction.

|4 dimensional electrostatic potential (V).

Av grid spacing in v direction. '

x, ¥, z Cartesian coordinates.

Greek symbols

£ permittivity of free space (farad/m).
¥ dimensioniess potential [ =eV/kT ]

T particle current density (m~%/s).

i mobility of a charged particle (m?/V s).

Subscripts

electrons.

pertaining to the number density; neutral particles.
wire.

pertaining to the potential.

10ns.

ambient.
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